Mathematics (from Ancient Greek μάθημα; máthēma: ‘knowledge, study, learning’) is an area of knowledge that includes such topics as numbers (arithmetic, number theory), formulas and related structures (algebra), shapes and the spaces in which they are contained (geometry), and quantities and their changes (calculus and analysis).

Most mathematical activity involves the use of pure reason to discover or prove the properties of abstract objects, which consist of either abstractions from nature or—in modern mathematics—entities that are stipulated with certain properties, called axioms. A mathematical proof consists of a succession of applications of some deductive rules to already known results, including previously proved theorems, axioms and (in case of abstraction from nature) some basic properties that are considered as true starting points of the theory under consideration.

Mathematics is used in science for modeling phenomena, which then allows predictions to be made from experimental laws. The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model. Inaccurate predictions, rather than being caused by incorrect mathematics, imply the need to change the mathematical model used. For example, the perihelion precession of Mercury could only be explained after the emergence of Einstein’s general relativity, which replaced Newton’s law of gravitation as a better mathematical model.

But for more post and free books from our site please make sure you subscribe to our site and if you need a copy of our notes as how it is in our site contact us any time we sell them in low cost in form of PDF or WORD.

**mathematics**, the science
of structure, order, and relation that has evolved from elemental
practices of counting, measuring, and describing the shapes of objects.
It deals with logical reasoning and quantitative calculation, and its
development has involved an increasing degree of idealization and
abstraction of its subject matter. Since the 17th century, mathematics
has been an indispensable
adjunct to the physical sciences and technology, and in more recent
times it has assumed a similar role in the quantitative aspects of the
life sciences.

In many cultures—under the stimulus of the needs of practical pursuits, such as commerce and agriculture—mathematics has developed far beyond basic counting. This growth has been greatest in societies complex enough to sustain these activities and to provide leisure for contemplation and the opportunity to build on the achievements of earlier mathematicians.

All
mathematical systems (for example, Euclidean geometry) are combinations
of sets of axioms and of theorems that can be logically deduced from
the axioms. Inquiries
into the logical and philosophical basis of mathematics reduce to
questions of whether the axioms of a given system ensure its
completeness and its consistency. For full treatment of this aspect, *see* mathematics, foundations of.

This article offers a history of mathematics from ancient times to the present. As a consequence of the exponential growth of science, most mathematics has developed since the 15th century ce, and it is a historical fact that, from the 15th century to the late 20th century, new developments in mathematics were largely concentrated in Europe and North America. For these reasons, the bulk of this article is devoted to European developments since 1500.

This does not mean, however, that developments elsewhere have been unimportant. Indeed, to understand the history of mathematics in Europe, it is necessary to know its history at least in ancient Mesopotamia and Egypt, in ancient Greece, and in Islamic civilization from the 9th to the 15th century. The way in which these civilizations influenced one another and the important direct contributions Greece and Islam made to later developments are discussed in the first parts of this article.

India’s contributions to the development of contemporary mathematics were made through the considerable influence of Indian achievements on Islamic mathematics during its formative years. A separate article, South Asian mathematics, focuses on the early history of mathematics in the Indian subcontinent and the development there of the modern decimal place-value numeral system. The article East Asian mathematics covers the mostly independent development of mathematics in China, Japan, Korea, and Vietnam.

Ancient mathematical sources

It is important to be aware of the character of the sources for the study of the history of mathematics. The history of Mesopotamian and Egyptian mathematics is based on the extant original documents written by scribes. Although in the case of Egypt these documents are few, they are all of a type and leave little doubt that Egyptian mathematics was, on the whole, elementary and profoundly practical in its orientation. For Mesopotamian mathematics, on the other hand, there are a large number of clay tablets, which reveal mathematical achievements of a much higher order than those of the Egyptians. The tablets indicate that the Mesopotamians had a great deal of remarkable mathematical knowledge, although they offer no evidence that this knowledge was organized into a deductive system. Future research may reveal more about the early development of mathematics in Mesopotamia or about its influence on Greek mathematics, but it seems likely that this picture of Mesopotamian mathematics will stand.

From the period before Alexander the Great,
no Greek mathematical documents have been preserved except for
fragmentary paraphrases, and, even for the subsequent period, it is well
to remember that the oldest copies of Euclid’s *Elements* are in Byzantine manuscripts dating from the 10th century ce.
This stands in complete contrast to the situation described above for
Egyptian and Babylonian documents. Although, in general outline, the
present account of Greek mathematics is secure, in such important
matters as the origin of the axiomatic method, the pre-Euclidean theory of ratios, and the discovery of the conic sections,
historians have given competing accounts based on fragmentary texts,
quotations of early writings culled from nonmathematical sources, and a
considerable amount of conjecture.

Many important treatises from the early period of Islamic mathematics have not survived or have survived only in Latin translations, so that there are still many unanswered questions about the relationship between early Islamic mathematics and the mathematics of Greece and India. In addition, the amount of surviving material from later centuries is so large in comparison with that which has been studied that it is not yet possible to offer any sure judgment of what later Islamic mathematics did not contain, and therefore it is not yet possible to evaluate with any assurance what was original in European mathematics from the 11th to the 15th century.

In modern times the invention of printing has largely solved the problem of obtaining secure texts and has allowed historians of mathematics to concentrate their editorial efforts on the correspondence or the unpublished works of mathematicians. However, the exponential growth of mathematics means that, for the period from the 19th century on, historians are able to treat only the major figures in any detail. In addition, there is, as the period gets nearer the present, the problem of perspective. Mathematics, like any other human activity, has its fashions, and the nearer one is to a given period, the more likely these fashions will look like the wave of the future. For this reason, the present article makes no attempt to assess the most recent developments in the subject.

Unlike the Egyptians, the mathematicians of the Old Babylonian period went far beyond the immediate challenges of their official accounting duties. For example, they introduced a versatile numeral system, which, like the modern system, exploited the notion of place value, and they developed computational methods that took advantage of this means of expressing numbers; they solved linear and quadratic problems by methods much like those now used in algebra; their success with the study of what are now called Pythagorean number triples was a remarkable feat in number theory. The scribes who made such discoveries must have believed mathematics to be worthy of study in its own right, not just as a practical tool.

The four arithmetic operations were performed in the same way as in the modern decimal system, except that carrying occurred whenever a sum reached 60 rather than 10. Multiplication was facilitated by means of tables; one typical tablet lists the multiples of a number by 1, 2, 3,…, 19, 20, 30, 40, and 50. To multiply two numbers several places long, the scribe first broke the problem down into several multiplications, each by a one-place number, and then looked up the value of each product in the appropriate tables. He found the answer to the problem by adding up these intermediate results. These tables also assisted in division, for the values that head them were all reciprocals of regular numbers.

Regular numbers are those whose prime factors divide the base; the reciprocals of such numbers thus have only a finite number of places (by contrast, the reciprocals of nonregular numbers produce an infinitely repeating numeral). In base 10, for example, only numbers with factors of 2 and 5 (e.g., 8 or 50) are regular, and the reciprocals (1/8 = 0.125, 1/50 = 0.02) have finite expressions; but the reciprocals of other numbers (such as 3 and 7) repeat infinitely and , respectively, where the bar indicates the digits that continually repeat). In base 60, only numbers with factors of 2, 3, and 5 are regular; for example, 6 and 54 are regular, so that their reciprocals (10 and 1 6 40) are finite. The entries in the multiplication table for 1 6 40 are thus simultaneously multiples of its reciprocal 1/54. To divide a number by any regular number, then, one can consult the table of multiples for its reciprocal.

Geometric and algebraic problems

In a Babylonian tablet now in Berlin, the diagonal of a rectangle of sides 40 and 10 is solved as 40 + 10^{2}/(2 × 40). Here a very effective approximating rule is being used (that the square root of the sum of *a*^{2} + *b*^{2} can be estimated as *a* + *b*^{2}/2*a*),
the same rule found frequently in later Greek geometric writings. Both
these examples for roots illustrate the Babylonians’ arithmetic approach
in geometry.
They also show that the Babylonians were aware of the relation between
the hypotenuse and the two legs of a right triangle (now commonly known
as the Pythagorean theorem) more than a thousand years before the Greeks used it.

A
type of problem that occurs frequently in the Babylonian tablets seeks
the base and height of a rectangle, where their product and sum have
specified values. From the given information the scribe worked out the
difference, since (*b* − *h*)^{2} = (*b* + *h*)^{2} − 4*b**h*.
In the same way, if the product and difference were given, the sum
could be found. And, once both the sum and difference were known, each
side could be determined, for 2*b* = (*b* + *h*) + (*b* − *h*) and 2*h* = (*b* + *h*) − (*b* − *h*). This procedure is equivalent to a solution of the general quadratic
in one unknown. In some places, however, the Babylonian scribes solved
quadratic problems in terms of a single unknown, just as would now be
done by means of the quadratic formula.

Although these Babylonian quadratic procedures have often been described as the earliest appearance of algebra, there are important distinctions. The scribes lacked an algebraic symbolism; although they must certainly have understood that their solution procedures were general, they always presented them in terms of particular cases, rather than as the working through of general formulas and identities. They thus lacked the means for presenting general derivations and proofs of their solution procedures. Their use of sequential procedures rather than formulas, however, is less likely to detract from an evaluation of their effort now that algorithmic methods much like theirs have become commonplace through the development of computers.

## Mathematical astronomy

The sexagesimal method developed by the Babylonians has a far greater computational potential than what was actually needed for the older problem texts. With the development of mathematical astronomy in the Seleucid period, however, it became indispensable. Astronomers sought to predict future occurrences of important phenomena, such as lunar eclipses and critical points in planetary cycles (conjunctions, oppositions, stationary points, and first and last visibility). They devised a technique for computing these positions (expressed in terms of degrees of latitude and longitude, measured relative to the path of the Sun’s apparent annual motion) by successively adding appropriate terms in arithmetic progression. The results were then organized into a table listing positions as far ahead as the scribe chose. (Although the method is purely arithmetic, one can interpret it graphically: the tabulated values form a linear “zigzag” approximation to what is actually a sinusoidal variation.) While observations extending over centuries are required for finding the necessary parameters (e.g., periods, angular range between maximum and minimum values, and the like), only the computational apparatus at their disposal made the astronomers’ forecasting effort possible.

Within a relatively short time (perhaps a century or less), the elements of this system came into the hands of the Greeks. Although Hipparchus (2nd century bce) favoured the geometric approach of his Greek predecessors, he took over parameters from the Mesopotamians and adopted their sexagesimal style of computation. Through the Greeks it passed to Arab scientists during the Middle Ages and thence to Europe, where it remained prominent in mathematical astronomy during the Renaissance and the early modern period. To this day it persists in the use of minutes and seconds to measure time and angles.

Aspects of the Old Babylonian mathematics may have come to the Greeks even earlier, perhaps in the 5th century bce,
the formative period of Greek geometry. There are a number of parallels
that scholars have noted. For example, the Greek technique of
“application of area” (*see below* Greek mathematics)
corresponded to the Babylonian quadratic methods (although in a
geometric, not arithmetic, form). Further, the Babylonian rule for
estimating square
roots was widely used in Greek geometric computations, and there may
also have been some shared nuances of technical terminology. Although
details of the timing and manner of such a transmission
are obscure because of the absence of explicit documentation, it seems
that Western mathematics, while stemming largely from the Greeks, is
considerably indebted to the older Mesopotamians.

The introduction of writing in Egypt in the predynastic period (*c.* 3000 bce) brought with it the formation of a special class of literate professionals, the scribes.
By virtue of their writing skills, the scribes took on all the duties
of a civil service: record keeping, tax accounting, the management of public works
(building projects and the like), even the prosecution of war through
overseeing military supplies and payrolls. Young men enrolled in scribal
schools to learn the essentials of the trade, which included not only
reading and writing but also the basics of mathematics.

One of the texts popular as a copy exercise in the schools of the New Kingdom (13th century bce) was a satiric letter in which one scribe, Hori, taunts his rival, Amen-em-opet, for his incompetence as an adviser and manager. “You are the clever scribe at the head of the troops,” Hori chides at one point,

What is known of Egyptian mathematics tallies well with the tests posed by the scribe Hori. The information comes primarily from two long papyrus documents that once served as textbooks within scribal schools. The Rhind papyrus (in the British Museum) is a copy made in the 17th century bce of a text two centuries older still. In it is found a long table of fractional parts to help with division, followed by the solutions of 84 specific problems in arithmetic and geometry. The Golenishchev papyrus (in the Moscow Museum of Fine Arts), dating from the 19th century bce, presents 25 problems of a similar type. These problems reflect well the functions the scribes would perform, for they deal with how to distribute beer and bread as wages, for example, and how to measure the areas of fields as well as the volumes of pyramids and other solids.

For larger numbers this procedure can be improved by considering multiples of one of the factors by 10, 20,…or even by higher orders of magnitude (100, 1,000,…), as necessary (in the Egyptian decimal notation, these multiples are easy to work out). Thus, one can find the product of 28 by 27 by setting out the multiples of 28 by 1, 2, 4, 8, 10, and 20. Since the entries 1, 2, 4, and 20 add up to 27, one has only to add up the corresponding multiples to find the answer.

Computations involving fractions are carried out under the restriction to unit parts (that is, fractions that in modern notation are written with 1 as the numerator). To express the result of dividing 4 by 7, for instance, which in modern notation is simply 4/7, the scribe wrote 1/2 + 1/14. The procedure for finding quotients in this form merely extends the usual method for the division of integers, where one now inspects the entries for 2/3, 1/3, 1/6, etc., and 1/2, 1/4, 1/8, etc., until the corresponding multiples of the divisor sum to the dividend. (The scribes included 2/3, one may observe, even though it is not a unit fraction.) In practice the procedure can sometimes become quite complicated (for example, the value for 2/29 is given in the Rhind papyrus as 1/24 + 1/58 + 1/174 + 1/232) and can be worked out in different ways (for example, the same 2/29 might be found as 1/15 + 1/435 or as 1/16 + 1/232 + 1/464, etc.). A considerable portion of the papyrus texts is devoted to tables to facilitate the finding of such unit-fraction values.

...
## No comments:

## Post a Comment